

PROJECT RAVI
A Machine Learning Framework to Predict Onset of Diabetes

NOVEMBER 1, 2022

MIGUL JAIN

Class XI

Vels Vidyashram High School, Chennai

Under the guidance of:

Manish Sharma, DIGITSUTRA

1 | P a g e

TABLE OF CONTENT:

ABSTRACT: --- 2

INSPIRATION: --3

CHAPTER 1:

1.1 Introduction-----------------------------------3-4

1.2 Objective--4

1.3 Scope of Study---------------------------------5

CHAPTER 2:

 2.1 Literature Survey-------------------------------6-7

CHAPTER 3:

 3.1 Problem Statement---------------------------8

CHAPTER 4:

 4.1 Proposed Solutions--------------------------9

 4.2 About our Dataset----------------------------9-10

CHAPTER 5:

 5.1 Experimental Set-Up------------------------11-25

 5.2 Result Analysis---------------------------------26

CHAPTER 6:

 6.1 Conclusion--------------------------------------27

 6.2 Bibliography------------------------------------28

2 | P a g e

ABSTRACT:

Diabetes is a common chronic disease that many people suffer

from every year. Anything that leads to high sugar level in the

body – such as unhealthy lifestyle, consumption of fast foods, or

genetic differences – can be a cause for diabetes (Both Type 1

and 2). The consequences for ignoring the symptoms can be

very extreme.

However, with the help of Machine Learning, we can now

create an algorithm to predict the onset of diabetes using

parameters whose relation we could not understand

The aim of this project is to find out and apply the most

accurate method for the prediction of diabetes. The methods

used in the code are:

1. Logistic Regression

2. Random Forest Classifier

3. SVM

4. Naïve Bayes’ Classifier

3 | P a g e

INSPIRATION:

Three years ago, my grandfather passed away. Diabetes played

a major role in his death. It was a wake-up call for me. I realized

how chronic diseases like diabetes are initially ignored as some

small problem, and then becomes too big for us to handle. It

gave me the idea to come up with some sort of model so that

using it, people can accurately predict if they will have diabetes

or not. Knowing this can save many lives just like my

grandfathers

CHAPTER 1:

INTRODUCTION:

Machine learning is a subset of artificial intelligence that

empowers systems to learn from data without explicit

programming. Using algorithms and statistical models, it helps

computers to recognize patterns, make predictions, and

improve their performance over time

The term Machine Learning was first coined in 1959 by an IBM

employee, Arthur Samuel. Its first use was to recognize and

filter sonar signals from the invalid ones. However, it has

advanced quite a bit since then. Now, we use Machine Learning

to create self-driving cars.

4 | P a g e

There are three major types of Machine Learning. They are as

follows:

a. Supervised Machine Learning

b. Unsupervised Machine Learning

c. Reinforced Machine Learning

In this project, we use the concept of Supervised Machine

Learning for our purposes.

OBJECTIVE:

In this project we have tried to predict diabetes using

machine learning. We have used Random Forest Classifier,

Logistic Regression, Support Vector Machine and Naïve

Bayes’ Classifier to predict the same.

The errors encountered in this project are:

1. False Negative: When a patient is diabetic, but the

algorithm predicts that it is not.

2. False Positive: When a patient is not diabetic, but the

algorithm predicts otherwise.

A main goal in this project is also to try out different

methods of classification to improve upon the accuracy of

our model.

5 | P a g e

SCOPE OF STUDY:

In this project various classification methods have been used.

They are as follows:

• Logistic Regression: It is a statistical model used for

classification and prediction analysis. Often, it is used for

binary classification: True/False, 0/1.

• Random Forest Classifier: It contains several decision

trees on various subsets of the given dataset. Then it takes

the average in order to improve the predictive accuracy on

that dataset.

• Support Vector Machine: Support Vector Machine or

SVM is one of the most popular Supervised Learning

algorithms. The goal of the SVM algorithm is to create the

best line or decision boundary that can segregate n-

dimensional space into classes.

6 | P a g e

Confusion matrix: It does the performance of a machine

learning model on a set of test data. It is generally used to

measure the performance of classification model

CHAPTER 2:

LITERATURE SURVEY:

Machine Learning is broadly classified into three categories:

1. Supervised Learning: It is defined by its use of labeled

datasets to train algorithms that to classify data or predict

outcomes accurately. Simply put, it uses the labelled data

received and creates a relation from it in the form of an

equation using both the dependent and independent

variables. This equation is then used to predict outputs for

new data. Supervised learning helps organizations solve for

a variety of real-world problems at scale, such as

classifying spam in a separate folder from your inbox.

2. Unsupervised Learning: Unsupervised learning uses

machine learning algorithms to analyze and cluster

unlabeled datasets. These algorithms discover hidden

patterns or data groupings without the need for human

7 | P a g e

intervention. Its ability to discover similarities and

differences in information make it the ideal solution for

exploratory data analysis, cross-selling strategies, customer

segmentation, and image recognition.

3. Reinforced Learning: It is employed by various software and

machines to find the best possible behavior or path it should take

in a specific situation. Reinforcement learning differs from

supervised learning in a way that in supervised learning the

training data has the answer key with it so the model is trained

with the correct answer itself whereas in reinforcement learning,

there is no answer but the reinforcement agent decides what to

do to perform the given task. In the absence of a training dataset,

it is bound to learn from its experience.

8 | P a g e

Classification of Machine Learning

CHAPTER 3:

PROBLEM STATEMENT:

Diabetes can depend on a lot of factors. Due to this, it is

extremely difficult to find a relation between the input and

output parameters for a human. This is where Machine

Learning shines

9 | P a g e

Thanks to Machine Learning, we have been able to apply

supervised learning concepts to predict diabetes using 8

common factors.

CHAPTER 4:

MACHINE LEARNING PROCESS FLOW:

The model will be created in the following manner:

Step 1:Extraction of PIMA

Dataset

Step 2: Data Analysis and Refining

10 | P a g e

ABOUT OUR DATASET:

This dataset is originally from the National Institute of

Diabetes and Digestive and Kidney Diseases. The objective of

the dataset is to diagnostically predict whether a patient has

diabetes, based on certain diagnostic measurements included

in the dataset.

From the data set in the (.csv) File We can find several variables,

some of them are independent (several medical predictor

variables) and only one target

dependent variable (Outcome).

• The dataset consists of 769 data points, with 9 features

each.

Step 3: Training, Testing and Splitting

of Data
Step 4: Classification of Data

Step 5: Analysis of Output

11 | P a g e

• For the outcome attribute: 0 means No Diabetes, and 1

means Diabetes

CHAPTER 5:

EXPERIMENTAL SETUP

12 | P a g e

Step 1: Extraction of PIMA Dataset

import pandas as pd

import numpy as np

import sklearn as sk

import seaborn as sns

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings('ignore')

df1=pd.read_csv('diabetes.csv')

Step 2: Data Analysis and Refining

df1.head(10)

(Gives the first 10 rows of the data used)

df1.shape

13 | P a g e

(Gives the dimensions of the data)

(768, 9)

In [5]:

df1.columns

(Gives the column labels of the data)

Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness','Insulin

','BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],

 dtype='object')

df1.describe()

(Gives standard information regarding the overall values for

each column)

p=df1.hist(figsize=(25,25))

(Creates a histogram for each column’s data)

14 | P a g e

plt.figure(figsize=(15,15))

<Figure size 1080x1080 with 0 Axes>

<Figure size 1080x1080 with 0 Axes>

p = sns.heatmap(df1.corr(), annot=True,cmap ='RdYlGn')

(Creates a heatmap to understand the relation of a parameter

and the output)

(a darker coloured slot means a higher correlation between the

two attributes)

15 | P a g e

p = sns.heatmap(df1.corr(), annot=True,cmap ='RdYlGn')

16 | P a g e

p=sns.heatmap(df1.corr(),annot=True,cmap='RdYlGn')

df1['Outcome']= df1['Outcome'].astype('category')

17 | P a g e

df1.isnull()

df1.isnull().sum()

(Shows the total number of null values for each parameter)

Pregnancies 0

Glucose 0

BloodPressure 0

SkinThickness 0

Insulin 0

BMI 0

DiabetesPedigreeFunction 0

Age 0

Outcome 0

dtype: int64

df1.skew()

(Shows how unevenly the data for a parameter is distributed)

Pregnancies 0.901674

Glucose 0.173754

BloodPressure -1.843608

SkinThickness 0.109372

Insulin 2.272251

BMI -0.428982

DiabetesPedigreeFunction 1.919911

Age 1.129597

dtype: float64

Step 3: Training, Testing and Splitting of Data

X=df1.drop('Outcome', axis=1)

(Creating a dataframe without the outcomes)

y=df1['Outcome']

(Creating a dataframe with only the outcomes)

18 | P a g e

X.shape

(768, 8)

In [17]:

y.shape

(768,)

In [53]:

from sklearn.model_selection import train_test_split

X_train,X_test, y_train, y_test=

train_test_split(X,y,test_size=0.1, random_state=40)

(Splitting the data into two parts- one for testing and one for

training)

X_train.shape

(691, 8)

In [55]:

X_test.shape

(77, 8)

In [56]:

y_train.shape

(691,)

In [57]:

y_test.shape

(77,)

In [58]:

from sklearn.linear_model import LogisticRegression

lr1=LogisticRegression()

lr1.fit(X_train, y_train)

19 | P a g e

(Using the Logistic Regression concept to create a relation

between parameters and the outcome)

LogisticRegression()

Step 4: Classification of Data

pred=lr1.predict(X_test)

pred2=lr1.predict(X_train)

print(pred)

(Based on the above relation, predicting the values of the

training data)

array([1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,

 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0], dtype=int64)

y_test

370 1

388 1

611 1

550 0

232 0

 ..

337 1

688 0

415 1

345 0

737 0

Name: Outcome, Length: 77, dtype: category

Categories (2, int64): [0, 1]

Chapter 5: Analysis of Output

20 | P a g e

LOGISTIC REGRESSION:

from sklearn import metrics

accu=metrics.accuracy_score(y_test, pred)

accu2=metrics.accuracy_score(y_train,pred2)

print("Train Data Accuracy: ",accu2)

print("Test Data Accuracy :",accu)

(Shows overall accuracy in prediction)
Train Data Accuracy: 0.7800289435600579

Test Data Accuracy : 0.7922077922077922

precision=metrics.precision_score(y_test, pred)

print(precision)

0.8181818181818182

In [64]:

recall=metrics.recall_score(y_test, pred)

print(recall)

0.6

metrics.confusion_matrix(y_test, pred)

array([[43, 4],

 [12, 18]], dtype=int64)

NAÏVE BAYES MODEL:

from sklearn.naive_bayes import GaussianNB

21 | P a g e

gnb = GaussianNB()

gnb.fit(X_train, y_train)

Y_pred = gnb.predict(X_test)

(Doing the similar prediction process using a different relation –

the Naïve Bayes model relation)

from sklearn import metrics

print("Gaussian Naive Bayes model accuracy(in %):",

metrics.accuracy_score(y_test, Y_pred)*100)

Gaussian Naive Bayes model accuracy(in %): 70.12987012987013

DECISION TREE:

from sklearn.tree import DecisionTreeClassifier

tree = DecisionTreeClassifier(random_state=0)

(Creation of the decision tree)

tree.fit(X_train, y_train)

print("Accuracy on training set:

{:.3f}".format(tree.score(X_train, y_train)))

print("Accuracy on test set: {:.3f}".format(tree.score(X_test,

y_test)))

22 | P a g e

Accuracy on training set: 1.000

Accuracy on test set: 0.675

tree = DecisionTreeClassifier(max_depth=3, random_state=0)

tree.fit(X_train, y_train)

print("Accuracy on training set:

{:.3f}".format(tree.score(X_train, y_train)))

print("Accuracy on test set: {:.3f}".format(tree.score(X_test,

y_test)))

Accuracy on training set: 0.771

Accuracy on test set: 0.818

RANDOM FOREST CLASSIFIER:

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=100,

random_state=0)

(Creation of multiple decision trees)

rf.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(rf.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(rf.score(X_test,

y_test)))

23 | P a g e

Accuracy on training set: 1.000

Accuracy on test set: 0.792

rf1 = RandomForestClassifier(max_depth=3, n_estimators=100,

random_state=0)

rf1.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(rf1.score(X_train,

y_train)))

print("Accuracy on test set: {:.3f}".format(rf1.score(X_test,

y_test)))

Accuracy on training set: 0.796

Accuracy on test set: 0.740

SUPPORT VECTOR MACHINE (SVM):

from sklearn.svm import SVC

svc = SVC()

svc.fit(X_train, y_train)

(Using Support Vector Machine to make a relation)

print("Accuracy on training set: {:.2f}".format(svc.score(X_train,

y_train)))

24 | P a g e

print("Accuracy on test set: {:.2f}".format(svc.score(X_test,

y_test)))

Accuracy on training set: 0.77

Accuracy on test set: 0.79

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.fit_transform(X_test)

svc = SVC()

svc.fit(X_train_scaled, y_train)

print("Accuracy on training set:

{:.2f}".format(svc.score(X_train_scaled, y_train)))

print("Accuracy on test set:

{:.2f}".format(svc.score(X_test_scaled, y_test)))

Accuracy on training set: 0.80

Accuracy on test set: 0.64

25 | P a g e

K-NEAREST NEIGHBOURSE:

from sklearn.neighbors import KNeighborsClassifier

training_accuracy = []

test_accuracy = []

neighbors_settings = range(1, 11)

for n_neighbors in neighbors_settings:

 knn = KNeighborsClassifier(n_neighbors=n_neighbors)

(Using K-Nearest Neighbourse concept to create a relation)

(

 knn.fit(X_train, y_train)

 training_accuracy.append(knn.score(X_train, y_train))

 test_accuracy.append(knn.score(X_test, y_test))

plt.plot(neighbors_settings, training_accuracy, label="training

accuracy")

(Creating a line graph from the output received)

plt.plot(neighbors_settings, test_accuracy, label="test

accuracy")

plt.ylabel("Accuracy")

26 | P a g e

plt.xlabel("n_neighbors")

plt.legend()

plt.savefig('knn_compare_model')

knn = KNeighborsClassifier(n_neighbors=9)

knn.fit(X_train, y_train)

print('Accuracy of K-NN classifier on training set:

{:.2f}'.format(knn.score(X_train, y_train)))

print('Accuracy of K-NN classifier on test set:

{:.2f}'.format(knn.score(X_test, y_test)))

Accuracy of K-NN classifier on training set: 0.79

Accuracy of K-NN classifier on test set: 0.77

27 | P a g e

RESULT ANALYSIS:

ACCURACY COMPARISION TABLE:

Accuracy= (Number of True Predictions) / (Total Number of

Predictions)

Algorithm Training Accuracy Test Accuracy

Logistic Regression 78 79.2
Random Forest

Classifier
79.6 74

Naïve Bayes Model 70.1 70.1

Decision Tree 77.1 81.8
SVM 77 79

K- Nearest
Neighbors

79 77

Thus, we can conclude that for this project and this dataset,

Decision Tree (from Testing Accuracy), gives us the most

efficiency for the model.

CHAPTER 6:

CONCLUSION:

In this project we learn not only about multiple applicable

algorithms, but also how to implement them in any purpose.

The prediction of diabetes can be done by various methods

such as: Logistic Regression, Decision Tree Classifier, Random

28 | P a g e

Forest Classifier, Support Vector Machine, etc. Out of all the

methods, Decision Tree has given the most accuracy

FUTURE SCOPE:

Now that the model has been successfully created, the future

scope of this project would be to convert in into a user-friendly

app that anyone can use. The other path the can be taken is to

give the application to doctors, since they would know more

about the medical condition. The aim here is to help people

with the diabetes prediction so that they don’t have to suffer its

consequences.

BIBLIOGRAPHY:

1. Tejas N. Joshi*, Prof. Pramila M. Chawan**, *M. Tech.

student (Department of Computer Engg. and Info. Tech.,

V.J.T.I., Mumbai, Maharashtra, India. **Associate Professor

(Department of Computer Engg. and Info. Tech., V.J.T.I.,

29 | P a g e

Mumbai, Maharashtra, India. Corresponding Author: Tejas

N. Joshi

2. Aishwarya Mujumdar a , V Vaidehi Dr. Vellore Institute of

Technology, Chennai, India and Mother Teresa Women’s

University, Kodaikanal, India

